THE GENERIC DIVISION RINGS

BY

S. A. AMITSUR

ABSTRACT

Let A = k $(X_1, X_2, ..., X_m)$ be the division ring generated by generic $n \times n$ matrices over a field k; then A is not a crossed product in the following cases: (i) there exists a prime q such that $q^3 \mid n$; (ii) [k:Q] = m, where Q is the field of rationals, then if either $q^3 \mid n$ for some q for which $q-1 \mid m$, or $q^2 \mid n$ for some other prime; (iii) $k = Z_{p^r}$ a finite field of p^r elements and either $q^3 \mid n$ for same $q \mid p^{r-1}$ or $q^2 \mid n$ for some other primes. Other cases are also considered.

1. The main results

Let k be a field of characteristic $p \ge 0$. Denote $k[X] = k[X_1, X_2, \cdots, X_l]$ $(\infty \ge l \ge 2)$ the ring generated by $n \times n$ generic matrices $X_i = (\xi_{\lambda\mu}^i)$, $1 \le \lambda$, $\mu \le n$ over k. Here, the set $\{\xi_{\lambda\mu}^i\}$ are commutative indeterminates over k. The ring k[X] is an Öre domain and has a ring of quotients k(X) which is a division ring of dimension n^2 over its center. It was shown in [1] that k(X) is not a crossed product for k = Q the field of rationals if k0 or k1 n for some odd prime k2. Following [1], Small and Schacher have proved in [2] that if k3 n for a prime k4 then the same holds if k4 is of characteristic zero or of k5 of transcendence degree k6 over the prime field of k7 elements, and k8 n or k9 of transcendence degree

In the present paper we study further the problem when k(X) is not a crossed product and we prove Theorem 1.

THEOREM 1. i. If k is a field of algebraic numbers, and [k:Q] = m then k(X) is not a crossed product if either $q^3 \mid n$ for a prime q such that $q-1 \mid m$, the degree of k over Q, or $q^2 \mid n$ for some other prime.

ii. $k = Z_{pr}$ a finite field of p^r elements and (n, p) = 1, then k(X) is not a crossed product if $q^3 \mid n$ for some $q \mid p^r - 1$, or $q^2 \mid n$ for some other prime.

Received December 20, 1973

iii. If there exists a field k for which k(X) is a crossed product then there is a finite algebraic extension F_0 of the prime field $P (= Q \text{ or } Z_p)$ such that $F_0(X)$ is a crossed product and F_0 depends only on the characteristic (and not on k).

We also take this opportunity to bring two additional results. The first is a slight generalization of Small-Schacher result [5], namely, Theorem 2.

THEOREM 2. k(X) is not a crossed product in $q^3 \mid n$ for some prime, q and (n,p) = 1 if k is of characteristic p.

This result is a corollary of Theorem 1 (i), (ii) and (iii), but we shall prove this fact using the construction of [1] without using deep results in algebras and algebraic extensions of local fields.

The other result is a known fact.

THEOREM 3. For arbitrary commutative domain Ω , the ring $\Omega[X]$ is an \ddot{O} re domain and its ring of quotient is a central division algebra of domain n^2 .

This result is attributed to the present author; it is, in fact, proved in an equivalent form in [2, Th. 3 and 4, p. 472], but at no place does it appear as stated in Theorem 3. Since this result became fundamental in the construction of non-crossed products, we present here a complete proof of this result, which is the reproduction of that proof in the present context.

2. Proof of Theorem 3

The proof of Theorem 3 depends on the following observation.

LEMMA 1. A polynomial identity $g[x_1, x_2, \cdots] = 0$ (in non-commutative indeterminates x_i) holds in the matrix ring $M_n(\Omega)$ over an infinite commutative domain Ω , if and only if $g[X_1, X_2, \cdots] = 0$ for the substitution $x_i = X_i$ the generic matrices.

This is equivalent to the following, which will not be used here.

LEMMA 1'. $\Omega[X] \cong \Omega[x]/M_n$, where $\Omega[x]$ is the free ring and M_n is the ideal of all identities of $M_n(\Omega)$, for an infinite commutative domain Ω .

Indeed, if g[x] = 0 holds in $M_n(\Omega)$ and Ω is infinite, then g[x] = 0 holds also n every $M_n(K)$ where K is a commutative ring $\supseteq \Omega$. In particular it will hold for $K = \Omega[\xi]$, the ring of polynomials in the $\{\xi_{\lambda\mu}^i\}$. But $X_i \in M_n(\Omega[\xi])$ and so g[X] = 0. Conversely, if g[X] = 0 then for any substitution $x_i = A_i = (a_{\lambda\mu}^i)$ we have a homomorphism $\phi: \Omega[\xi] \to M_n(\Omega)$ by setting $\xi_{\lambda\mu}^i \to a_{\lambda\mu}$ and this maps

 $M_n(\Omega[\xi])$ into $M_n(\Omega)$; in particular, $0 = \phi(g[X]) = g(A)$, that is, g[x] = 0 holds in $M_n(\Omega)$.

The proof of Lemma 1 is now evident.

Next we need the following result ([4, Lem. 2.1]).

LEMMA 2. Given a field k and an integer n, then there exist a field $K \supseteq C$ and a central division algebra over K of dimension n^2 (and of exponent n).

An alternative construction of such an algebra will be given in the proof of Theorem 2.

We turn now to the proof of Theorem 3. Let $g[X_1, X_2, \cdots]h[X_1, X_2, \cdots] = 0$ hold in $\Omega[X_1, X_2, \cdots]$ and let k be the field of quotients of Ω . It follows by Lemma 1 that g[x]h[x] = 0 holds in every $M_n(H)$ for H commutative $\supseteq \Omega$. In particular, choose D a division ring of dimension n^2 over a field $K \supseteq \Omega$ (Lemma 2) and H a splitting field of D; then $M_n(H) \supseteq D$, and so g[x]h[x] = 0 holds in D. Thus for every substitution $x_i = d_i \in D$ then g[d]h[d] = 0 and since D is a division ring then g[d] = 0 or h[d] = 0. This clearly implies that D will also satisfy an identity g[x]zh[x] = 0 with z a new non-commutative indeterminate. Again, it will follow that g[x]zh[x] = 0 holds also in $M_n(H)$ and hence also in every $M_n(K)$ for commutative $K \supseteq \Omega$. In particular this will hold in $M_n(k(\xi))$ where $k(\xi)$ is the field of quotients of $k[\xi]$, and so $g[X]M_n(k(\xi))h[X] = 0$. But $M_n(k(\xi))$ is a simple ring and so either g[X] = 0 or h[X] = 0.

Finally, $\Omega[x]$ is a ring satisfying the polynomial identities of $M_n(\Omega[\xi])$ and hence, applying Posner's theorem, we obtain the proof of the rest of Theorem 3. Note that a straightforward proof for the existence of the division ring of quotient in the case of a domain is given in [3].

3. Proof of Theorem 2

The study of k(X) in [1] was restricted to the case k = Q and it was pointed out in [5] that the methods work as well for other fields. In particular the construction of [1,Th. 3] and the results of [1, Sect. 1] hold for arbitrary field k of any characteristic. We shall need the following construction:

A. Given a field k and $n=q_1q_2\cdots q_r$ a product of different primes (not necessarily different), then there exists a field $K\supseteq k$ and a division ring A of dimension n^2 over its center K, such that the maximal subfields L of A are abelian with the Galois group $\Gamma=S_1\times S_2\times \cdots \times S_r$, S_i cyclic of order q_i , that is, Γ is completely reducible ([1, Th. 3]).

The construction given in [1, Th. 3] will also yield:

B. Given a field k and an integer n, then there exists a field $K \supseteq k$ and a division algebra D of dimension n^2 over the center K (of exponent n) such that the maximal normal subfields of D have a Galois group Γ which is a cyclic extension of a cyclic group, that is, there exists an exact sequence $1 \to \Gamma_1 \to \Gamma \to \Gamma_2 \to 1$ such that both Γ_1 and Γ_2 are cyclic.

Indeed, follow the construction of [1, Sect. 2, p. 412] and take $K = \bar{k}\{t_1, t_2\}$ where \bar{k} is the algebraic closure of the field k. Recall that $\bar{k}\{t_1, t_2\} = \bar{k}\{t_1\}\{t_2\}$ where $F\{t\}$ denotes the field of formal power series in t over F. Let D be the cyclic cross product $(K(t_1^{1/n}), \sigma, t_2)$. The proof of [1, Th. 3] holds in this case and one obtains that D is a division algebra with center K of dimension n^2 (it is not difficult to show that its exponent is also n). [1, Prop. 2] yields that the algebraic extensions L of K of degree n are of the form $K[\tau_1, \tau_2]$ where

$$\tau_1^{\nu_{11}} = t_1, \ \tau_1^{\nu_{21}} t_2^{\nu_{22}} = t_2.$$

We thus obtain the sequence of fields $K \subset K[\tau_1] \subset K[\tau_1, \tau_2]$. The first field $K[\tau_1]$ is a cyclic extension of K since $\tau_1^{\nu_{11}} = t_1$ and K contains all roots of unity; also $K[\tau_1, \tau_2]$ is cyclic over $K[\tau_2]$ since $\tau_2^{\nu_{22}} = t_2\tau_1^{-\nu_{21}}$. Hence, if $K[\tau_1, \tau_2]$ is a Galois extension of K with the Galois group Γ , then if Γ_1 be the group of automomorphisms leaving $K[\tau_1]$ invariant then Γ_1 is normal and cyclic and Γ/Γ_1 is also cyclic as the Galois group of $K[\tau_1]$ over K, as required.

We shall also need the following:

C. If k(X) is a crossed product with a group Γ , then any division ring D of dimension n^2 over a center $K \supseteq k$ is a crossed product with the same group Γ .

The proof of (C) for k = Q is given in [1, pp. 418-419, starting from line 12], but the same proof is valid for arbitrary k.

The proof of Theorem 2 is now straightforward. If k(X) is a crossed product of a group Γ , then by (A) it follows that Γ is a completely reducible group. Now every subgroup and homomorphic image of a completely reducible group is also completely reducible, and a cyclic group is completely reducible if and only if its order is a product of different primes. It follows now by (B) that we have $1 \to \Gamma_1 \to \Gamma_2 \to 1$ and so $n = |\Gamma| = |\Gamma_1| |\Gamma_2|$ and each $|\Gamma_i|$ is a product of different primes, so for a prime divisor $q \mid n$ at most $q^2 \mid n$, which proves Theorem 2.

We remark that this proof uses only the constructions of [1] and no deeper results on local or global fields are required (as in [1] and [5]). If the latter is used, we are able to obtain the stronger results stated in Theorem 1.

4. Proof of Theorem 1

We need some properties of local fields with finite residue fields, for example, [6, Chapt. 3]).

Consider first the case p = Q, and let k be an algebraic number field and (k:Q) = m. Let $k = Q(\alpha)$; we can choose α to be integral and so satisfy a minimal polynomial g[x] = 0 with integral coefficients. Let d = discriminant of g[x]. Choose a prime p such that (p,n) = 1 and $p \nmid d$ and consider the p-adic field Q_p . Let $g[x] = g_1[x] \cdots g_s[x]$ be the decomposition of g[x] in Q_p into irreducible factors, and $k_i = Q_p(\alpha_i)$, with α_i a root of $g_i[x] = 0$. The field k_i is also a complete ring with respect to a discrete valuation and the residue field k_i is a finite field of p^{f_i} elements where $g_i[x] \equiv h_i[x]^{e_i} \pmod{p}$, $f_i = \deg(h_i[x])$, and $n_i = \deg g_i[x] = e_i f_i$. Furthermore, the field k can be embedded in $k_i = Q_p(\alpha_i)$ by mapping $\alpha \to \alpha_i$.

The normal abelian extension L of k_i of degree n has a group Γ of automorphisms which have a cyclic inertia group Γ_T cyclic of degree f, and Γ/Γ_T is cyclic of degree e with fe = n, and $e \mid (p^{f_i} - 1)$.

The case $f_i = 1$ is [1, Th. 3]; the proof for arbitrary f_i is identical except that in the case $f_i = 1$, $k_i = Q_p$ and the residue field \bar{Q}_p contains p elements, so the roots of unity of Q_p satisfy $x^{p-1} - 1 = 0$. In the general case, the residue field \bar{k}_i contains $p^{f_i} - 1$ nonzero elements and so $x^e - 1 = 0$ is solvable in k_i if and only if $e \mid p^{f_i} - 1$.

Finally, there exists a division algebra B_i of dimension n^2 over the center k_i , thus its maximal abelian subfield has a group of automorphisms Γ of the type described above.

Following the proof of Theorem 2, we observe that if k(X) is a crossed product of a group Γ , then Γ is completely reducible by (A). It follows also by (C) that every division algebra of dimension n^2 over a center $\supseteq k$ will be a crossed product with the group Γ . Hence the preceding remarks yield that Γ is a cyclic extension of a cyclic group and so $n = |\Gamma| = |\Gamma_T| |\Gamma/\Gamma_T| = f e$, and since Γ_T , Γ/Γ_T are completely reducible, f and e, each is a product of different primes. Thus if a prime q, $q^2|n$, then q|e and so $q|p^{f_i}-1$ for all possible values f_i obtained from the decomposition of g[x]. Note also that $m = \deg g = \sum e_i f_i$ and so $q|p^m-1$ since $p^{\sum e_i f_i} \equiv \prod (p^{f_i})^{e_i} \equiv 1 \pmod{q}$.

Summarizing, if k(X) is a crossed product and (k:Q) = m then for $q^2 \mid n$, $q \mid p^m - 1$ for all primes p with the exception of a finite number of primes p. The

residue classes mod q form a cyclic group of order q-1; let a be a generator of this group; then each number a+tq is also a generating class. This class contains an infinite number of primes, hence there exists a prime p=a+tq whose class mod q generates the cyclic group of order q. Since we can choose the prime p not from the exceptional set, $p^m \equiv 1 \pmod{q}$ implies that $q-1 \mid m$.

Consequently, if $q^3 \mid n$ for a prime q for which $q-1 \mid m$ or $q^2 \mid n$ for some other prime, then k(X) is not a crossed product. This completes the proof of Theorem 1 (i).

REMARK. This includes the case m = 1 which was proved in [1].

The proof of part (ii) of Theorem 1 is similar. We need only replace Q_p with the complete field $Z_{p^r}\{t\}$, the field of formal power series in t over Z_{p^r} . Here the residue field $\overline{Z_{p^r}\{t\}}$ is Z_p and so $x^e-1=0$ is solvable in $Z_{p^r}\{t\}$ for (e,p)=1 if and only if $e \mid p^r-1$. Following the proof of (i) we obtain that k(X) is not a crossed product if $q^3 \mid n$ for a prime $q \mid p^r-1$ or $q^2 \mid n$ for some other prime q, which proves (ii).

To prove (iii), we start with an arbitrary k observing first that if k(X) is a crossed product of a group Γ , then

- 1. $k_0(X)$ is also a crossed product with Γ for some finitely generated subfield k_0 over the prime field $P(=Z_{p^r} \text{ or } Q)$;
- 2. $k_1(X)$ is also a crossed product with Γ for some finite algebraic extension of the prime field P.

The first part follows from the condition that k(X) is a crossed product of Γ can be stated by a finite number of conditions; namely [1, p. 418, conditions (G1)-(G4)]. These conditions where stated in [1] for k=Q, but they are valid for arbitrary k. These conditions involve only a finite number of elements of k; let $k_0 \subseteq k$ be the subfield generated by the elements involved, then clearly k_0 satisfies (1).

To prove (2), we let $k_0 = P(t_1, t_2, \dots, t_s)$ where P is the prime field (that is, Z_p or Q), and note that the conditions (G1)-(G4) of [1, p. 418] plus the additional requirements that some finite elements listed there of $k_0(X)$ are $\neq 0$, constitute a finite set. Hence we can find a specialization of k_0 into \bar{P} the algebraic closure of P, mapping $t_i \to \alpha_i \in \bar{P}$ such that all the preceding conditions will remain valid. The image of this specialization is, clearly, a finite algebraic extension k_1 of P which will satisfy (2), that is, $k_1(X)$ is a crossed product with Γ since (G1)-(G4) and the other requirements hold in $k_1(X)$.

We now apply (1) and (2) in the following cases. Let \overline{P} be the algebraic closure of the prime field P and let F be the algebraic closure of the field of all rational function in \aleph_0 commutative indeterminates over \overline{P} . If k(X) is a crossed product with Γ , then by (1), $k_0(X)$ is a crossed product with Γ for some field of finite transcendence degree over P. Hence k_0 can be embedded in F and, therefore, (1) implies that F(X) is also a crossed product with Γ . But then (2) yields that there exist a finite algebraic extension F_0 of P such that $F_0(X)$ is a crossed product, and we note that F_0 depends only on the field F which is fixed by the characteristic of F. This completes the proof of (iii) of Theorem 1.

REMARK. The degree $[F_0: P] = m$ is fixed by the characteristic. Hence we can use parts (i) and (ii) of Theorem 1 and state the following result.

For arbitrary field k of characteristic $p \ge 0$, there exists an integer m ($m = p^r$ for the case $p \ne 0$) such that k(X) is not a crossed product if either $q^3 \mid n$ for a prime q such that $q - 1 \mid m$ if p = 0 or $q \mid m - 1$ for $p \ne 0$, or $q^2 \mid n$ for some other prime q.

We guess that m=1 for p=0,; but as long as we prove that m depends on p and n, it may be that this result yields no more information than that given in Theorem 2, since the primes q for which $q-1\mid m$ and $q\mid n$ may include all primes of n.

REFERENCES

- 1. S. A. Amitsur, On central division algebras, Israel J. Math. 12 (1972), 408-420.
- 2. S. A. Amitsur, The T-ideals of the free rings, J. London Math. Soc. 30 (1955), 472.
- 3. S. A. Amitsur, On ring with identities, J. London Math. Soc. 30 (1955), 466.
- 4. S. A. Amitsur, Some results on central simple algebras, Ann. of Math. 63 (1965), 287.
- 5. M. M. Schacher and L. W. Small, Noncrossed product in characteristic p, J. Algebra, 24 (1973), 100-103.
 - 6. E. Weiss, Algebraic number theory, McGraw Hill, New York, 1963.

Institute of Mathematics
The Hebrew University of Jerusalem
Jerusalem, Israel